A first eigenvalue estimate for embedded hypersurfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First stability eigenvalue characterization of Clifford hypersurfaces

ABSTRACT : The stability operator of a compact oriented minimal hypersurface Mn−1 ⊂ S is given by J = −∆ − ‖A‖ − (n − 1), where ‖A‖ is the norm of the second fundamental form. Let λ1 be the first eigenvalue of J and define β = −λ1 − 2(n − 1). In [S] Simons proved that β ≥ 0 for any non-equatorial minimal hypersurface M ⊂ S. In this paper we will show that β = 0 only for Clifford hypersurfaces. ...

متن کامل

Pinching of the First Eigenvalue for Second Order Operators on Hypersurfaces of the Euclidean Space

We prove stability results associated with upper bounds for the first eigenvalue of certain second order differential operators of divergencetype on hypersurfaces of the Euclidean space. We deduce some applications to r-stability as well as to almost-Einstein hypersurfaces.

متن کامل

A Lichnerowicz estimate for the first eigenvalue of convex domains in Kähler manifolds

In this article, we prove a Lichnerowicz estimate for a compact convex domain of a Kähler manifold whose Ricci curvature satisfies Ric ≥ k for some constant k > 0. When equality is achieved, the boundary of the domain is totally geodesic and there exists a nontrivial holomorphic vector field. We show that a ball of sufficiently large radius in complex projective space provides an example of a s...

متن کامل

Dirac Operator on Embedded Hypersurfaces

New extrinsic lower bounds are given for the classical Dirac operator on the boundary of a compact domain of a spin manifold. The main tool is to solve some boundary problems for the Dirac operator of the domain under boundary conditions of Atiyah-Patodi-Singer type. Spinorial techniques are used to give simple proofs of classical results for compact embedded hypersurfaces.

متن کامل

A Remark on Zhong-yangs Eigenvalue Estimate

Moreover we know exactly when the equality holds: if and only if D is a disc. For any optimal geometric inequality it is important to have a complete understanding of the equality case. Sometimes this can be easily achieved by checking the proof of the inequality. Take as an example the following elegant theorem due to Lichenerowicz [L]: let (M; g) be a compact Riemannian manifold of dimension ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2008

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2007.11.019